
Shortest Path

Ciprian Habuc

Master student in Computer Science Department,

”Babeş-Bolyai” University, Cluj-Napoca, Romania

chippry@gmail.com

February 20, 2009



1 Introduction

A maze is defined as a complex tour puzzle in the form of a complex branch-

ing passage through which the solver must find a route.

There are various types of mazes. One of the most interesting types is

the perfect maze; it has no loops and no cell that can not be reached.

For generating mazes there are many algorithms. The most used are:

• Prim’s algorithm

• Kruskal’s algoritm

• Recursive division

The most common ways for solving mazes are:

• Wall follower

• Tremaux’s algoritm

2



2 Recursive division

One of the most simple way for generating a perfect maze is the recursive

division. It starts with a rectangular space called chamber. Then build at

random points two perpendicular walls that will divide the original chamber

into four smaller chambers separated by the four walls. On three randomly

chosed walls pick one cell-wide holes at random points. Continuing recur-

sively this way until each cell represents a chamber a perfect maze will result.

This method is pictured in the following figure:

Figure 1: Ilustration of recursive division

The coresponding algorithm will be:

Algorithm 1 recursiveDivision(Chamber)

A,B, C, D ⇐ pickRandomly4PerpendicularWalls
pick3HolesOn3OfTheWalls
recursiveDivision(A)
recursiveDivision(B)
recursiveDivision(C)
recursiveDivision(D)

3



3 Habuc’s algorithm

Wouldn’t it be useful to have a way for finding the shortest path for a perfect

maze since the maze creation?

3.1 Description

The algorithm starts by storing the entrance(initial) point of a rectangular

space(chamber). Then it picks two perpendicular walls that will produce

four new smaller chambers: A, B, C, D. On three of them pick at ran-

dom points one cell-wide cells. At this point depending on the position of

these three points and the entrance and exit of the big chamber there are

28(=4*(1+2+2+2)) posibilities for the shortest path to be built.The rooms

that has to be passed while following the shortest path will be recursively

processed by this algorithm (storing key points) and the left ones may be

processed by the recursive division algorithm. Finally it adds the exit point

of the big chamber. Now the solver should join the neighbour points (that

have a passage between them and no walls) with lines. This line represents

the shortest path.

3.2 Examples

The method can be described by the following algorithm:

4



Algorithm 2 habuc(Chamber)

shPList.add(Entrance) {add entrance point to the list }
A,B, C, D ⇐ pickRandomly4PerpendicularWalls
pick3Holes(x, y, z)On3OfTheWalls
listCompulsory ⇐ getListOfCompulsoryChambers(x, y, z, Entrance, Exit)
listNotCompulsory ⇐ getListOfNotCompulsoryChambers(x, y, z, Entrance, Exit)
for all X chamber in listCompulsory do

habuc(X)
end for
for all X chamber in listNotCompulsory do

recursiveDivision(X)
end for
shPList.add(Exit) {add exit point to shP - list of key points}

Let the images speak:

secondsubimage - let’s supose the entrance of the maze is the top-left point

and the exit the bottom-right point

forthsubimage - after picking the for walls and the three holes it is obvious

that there is no use for a solver to explore room B

fifthsubimage - the built maze and the stored shortest path

5



Figure 2: Ilustration of shortest path

Figure 3: Perfect maze and shortest path

6



4 Conclusions

Advantages

• it creates a perfect maze and stores the shortest path

• shortest path can be used for comparison with results from other algo-

rithms

Disadvantages

• it can be used only for perfect mazes

7


